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Abstract-In previous studies the fractal dimension (FD) has 
been shown to be a useful tool to detect non-stationarities and 
transients in biomedical signals like electroencephalogram 
(EEG) and electrocardiogram (ECG). The changes in FD are 
shown to characterise alterations in EEG due to changes in  
physiological states of brain, not only in normal but also in 
pathological functioning like epilepsy. The importance of 
long-term EEG monitoring for clinical evaluation in epilepsy 
has been also emphasised. Adaptive EEG segmentation and 
classification of the obtained segments  have been addressed 
to be a convenient solution to the problem of visual inspection 
of huge EEG data sets. The performance of adaptive 
segmentation plays an essential role in correct evaluation of 
the recordings. Thus, our aim in this study is to analyse the 
FD as a feature for adaptive EEG  segmentation and compare 
its performance with those of previously used features on 
epileptic EEG data. 

Keywords – EEG, adaptive segmentation, fractal dimension, 
epilepsy     

I. INTRODUCTION 

The importance of long-term EEG monitoring for 
differential diagnosis and therapy evaluation in epilepsy is 
described in several studies. Logar [1] mentions long-term 
EEG monitoring as a tool improving the diagnostic value 
of standard EEG recordings and providing additional 
necessary diagnostic information. Lopes da Silva [2] 
stresses the essentiality of pattern recognition and 
quantification of EEG for determination of different 
physiological states in anaesthesia, sleep and other long 
duration recordings. 

The long-term EEG recordings yield, however, the 
problem of analysing and quantifying huge data sets. 
Adaptive segmentation and clustering of the obtained 
segments of EEG have been addressed to be a convenient 
solution to the problem of visual inspection of the huge 
EEG data sets [3-5]. The performance of adaptive 
segmentation, which depends highly on the feature(s) used, 
is a key issue in correct evaluation of the data with this 
approach.  

FD is commonly applied in both system and signal 
analysis. In non-linear system analysis it is used for 
representing attractors which have fractional dimensions. 
The most commonly used algorithm for this purpose is the 
Grassberger and Proccacia method [6]. In signal 
processing, FD is addressed for detecting non-stationarities 
in time series. It has been shown to be a useful tool to 
detect transients also in EEG [7, 8].  Thus, in this study we 
examine the FD as a feature for adaptive EEG 
segmentation in epilepsy.   

II. METHODOLOGY  

A. Adaptive Segmentation Algorithm  

The adaptive segmentation algorithm used has been 
proposed by Silin and Skrylev [9].  The algorithm uses two 
successive windows moving on the time series in which the 
selected feature(s) is/are calculated. A measure difference 
function is obtained through the difference of feature(s) in 
the two successive windows. The adaptive segment 
boundaries are then assigned to be the local maxima of this 
measure difference function. 

In the original form of the algorithm spectral change 
measure calculated by fast Fourier transform (FFT) is used 
as the feature to detect non-stationarities. Because the 
computation of the spectral change measure by FFT is 
inefficient, the method has been  modified by Värri [10], 
who introduced a difference measure composed of a 
frequency measure, , estimated by the sum of the 

difference of consecutive signal samples, and an amplitude 
measure, , the sum of the absolute values of the signal  

in the relevant windows [3, 10].  

difF

difA

∑
=

−−=
wl

i
iidif xxF

1
1 ||       (1) 

∑
=

=
wl

i
idif xA

1
||        (2) 

where = window length,  is the iwl
ix th data point. The 

measure difference function,G , is then defined as, 

||||
11 jdifjdiffjdifjdifaj FFkAAkG −+−=
++

  (3) 

where  and  are coefficients for amplitude and 

frequency measures respectively, j is the j
ak fk

th window 
analysed. 

In order to avoid excessive segmentation due to 
redundant small segments, Krajca [3] introduced a 
threshold for the measure difference to the algorithm. The 
local maxima of the function G , which are over the 
assigned threshold are accepted to be positioning the 
segment boundaries. Krajca [3] suggested also values for 

and  ( kak fk a1= , 7=fk ) which were determined 

according to results of experiments with simulated signals.  

B. Fractal Dimension 

In signal processing, there are several methods to 
approximate the FD in time variant signals. In the study by 
Esteller [11] the most prominent methods for FD 
computing used in EEG analysis are compared. It is 
concluded that the Katz’s algorithm is the most consistent 
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method for discrimination of epileptic states from 
intercranial EEG. Therefore, we selected  Katz’s algorithm 
for fractal dimension calculation in our application. 
According to Katz, , the FD of a curve is defined as: D
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where L  is the total length of the curve, and  is the 
diameter estimated as the distance between the first data 
point and the data point that gives the largest distance. 
Normalising the distances with , the average distance 
between successive data points, we get: 
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For FD calculation Katz’s algorithm is implemented 
and tested on simulated data which is produced using the  
deterministic Weierstrass cosine function [12]: 
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where ω >1 and 0 < H < 1, and the fractal dimension of the 
generated signal is given by D = 2 - H. 

For the adaptive segmentation application, we assigned 
the FD as the only  measure for the function G . Thus the 
corresponding G  function is, 

|| 1 jjj DDG −= +
,    (8) 1,....,1 −= Nj

where  is the total number of windows in analysis.  N
The measure difference function G  is normalised by 

within the interval of analysis in order to be 

able to have standard values for the thresholds. 
)max(/ GG j

C. EEG Data  

In order to compare the performances of the features, 
30 different epileptic patterns are chosen randomly from 
clinical EEG data. The signals are acquired according to 
international 10/20 system with a sampling rate of 128 Hz.    

III. RESULTS AND DISCUSSION 
The first observation was that the FD decreased in 

epileptic pattern intervals (fig. 1, 3, 5, 7). Secondly, we 
observed that in 14 epileptic patterns out of 30, the FD was 
more sensitive to the end points of the patterns whereas the 
features proposed by Värri detected some redundant 
boundaries within the pattern before the end points were 
detected, that is, in order to detect the end points of the 
pattern, the threshold has to be decreased meaning that the 
redundant segment boundaries are needed to be included 
(eg. Pattern1 (fig. 1 and 2), Pattern 2 (fig. 3 and 4), Pattern 
4 (fig. 7 and 8)). Additionally, there observed to be 3 
patterns for which the Värri measures failed to detect the 

end points correctly such as the example pattern 3 (fig. 5 
and 6).  The results for the rest 13 patterns were similar. 
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Fig. 1. Segmentation result of FD, pattern 1. 

Window width=1.1 sec, overlapping=60%, threshold=0.4. 
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Fig. 2. Segmentation result of Värri measures, pattern 1. 

Window width=1.1 sec, overlapping=60%, threshold=0.4 (*) and 0.45 (o). 
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Fig. 3. Segmentation result of FD, pattern 2. 

Window width=1.1 sec, overlapping=60%, threshold=0.5. 
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Fig. 4. Segmentation result of Värri measures, pattern 2. 
Window width=1.1 sec, overlapping=60%, threshold=0.6 (*) and 0.75 (o). 
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Fig. 5. Segmentation result of FD, pattern 3. 

Window width=1.1 sec, overlapping=60%, threshold=0.35. 
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The window width should not be selected very large in 
order to be able to detect non-stationarities finer. It should 
also conform to the number of data points required to 
calculate the selected feature sufficiently. Additionally, the 
smaller the window width is, the higher the computational 
load is.   

Fig. 6. Segmentation result of Värri measures, pattern 3. 
Window width=1.1 sec, overlapping=60%, threshold=0.3 (*) and 0.4 (o). 
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Fig. 7. Segmentation result of FD, pattern 4. 

Window width=1.1 sec, overlapping=60%, threshold=0.38. 
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found are. This means a longer computation time and 
increase in the number of redundant segments. However, if 
the overlapping is too small the necessary segment 
boundaries to be detected can be missed. 

The threshold plays an important role in sensitivity of 
the algorithm. The higher the threshold is, the less sensitive 
the algorithm to the non-stationarities is. If the threshold is 
too low then there is again the problem of redundant 
segmentation.  

In our software realization these parameters can be 
input as desired so that their influences on the performance 
of the algorithm can be observed. The software also allows 
the automation of the analysis where we assign the window 
width and the overlapping a priori according to 
experimental results of the algorithm. For automated 
analysis, the threshold for FD is determined adaptively 
according to the distribution of the values of FD through 
the data interval analyzed. The median value in the 
distribution is assigned to be the threshold.    

V. CONCLUSION 

The use of FD as a feature in adaptive segmentation of 
epileptic EEG has advantages over the previously used 
parameters. First one is that FD can be used as a single 
feature without the need of any coefficients to combine 
different measures. Secondly, its higher sensitivity to end 
points of the epileptic patterns yields a better reduction of 
redundant segmentation, which can be also interpreted as 
FD being more stable within the epileptic pattern interval. 
These results need to be verified on a larger set of different 
epileptic patterns.   
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